Sensitivity of tropical intraseasonal variability to the pattern of climate warming

نویسندگان

  • Eric D. Maloney
  • Shang-Ping Xie
چکیده

[1] An aquaplanet general circulation model is used to assess the sensitivity of intraseasonal variability to the pattern of sea surface temperature (SST) warming. Three warming patterns are used. Projected SST warming at the end of the 21st century from the Geophysical Fluid Dynamics Laboratory Climate Model 2.1 is one pattern, and zonally symmetric and globally uniform versions of this warming perturbation that have the same global mean SST change are the other two. Changes in intraseasonal variability are sensitive to the pattern of SST warming, with significant decreases in Madden-Julian oscillation (MJO)-timescale precipitation and wind variability for a zonally symmetric warming, and significant increases in MJO precipitation amplitude for a globally uniform warming. The amplitude of the wind variability change does not scale directly with precipitation, but is instead mediated by increased tropical dry static stability associated with SST warming. The patterned SST simulations have a zonal mean SST warming that maximizes on the equator, which fosters increased equatorial boundary layer convergence and also increases equatorial SST relative to the rest of the tropics. Both factors support increased convection, reflected in reduced gross moist stability (GMS). Mean precipitation is decreased and GMS is increased in the off-equatorial Eastern Hemisphere near 10 S in the patterned warming simulations, where the strongest MJO-related intraseasonal precipitation variability is preferred in both the model and observations. It is argued that future changes in MJO activity may be sensitive to the pattern of SST warming, although these results should not be interpreted as a prediction of how MJO activity will change in future climate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MJO Intensification with Warming in the Superparameterized CESM

The Madden–Julian oscillation (MJO) is the dominant mode of tropical intraseasonal variability, characterized by an eastward-propagating envelope of convective anomalies with a 30–70-day time scale. Here, the authors report changes in MJO activity across coupled simulations with a superparameterized version of the NCARCommunity Earth SystemModel. They find that intraseasonal OLR variance nearly...

متن کامل

Cloud and radiation budget changes associated with tropical intraseasonal oscillations

[1] We explore the daily evolution of tropical intraseasonal oscillations in satellite-observed tropospheric temperature, precipitation, radiative fluxes, and cloud properties. The warm/rainy phase of a composited average of fifteen oscillations is accompanied by a net reduction in radiative input into the ocean-atmosphere system, with longwave heating anomalies transitioning to longwave coolin...

متن کامل

Enhanced MJO-like Variability at High SST

The authors report a significant increase in Madden–Julian oscillation (MJO)–like variability in a superparameterized version of the NCARCommunity AtmosphereModel run with high sea surface temperatures (SSTs). A series of aquaplanet simulations exhibit a tripling of intraseasonal outgoing longwave radiation variance as equatorial SST is increased from 268 to 358C. The simulated intraseasonal va...

متن کامل

Surface fluxes and tropical intraseasonal variability: a reassessment

The authors argue for the hypothesis that interactive feedbacks involving surface enthalpy fluxes are important to the dynamics of tropical intraseasonal variability. These include cloud-radiative feedbacks as well as surface turbulent flux feedbacks; the former effectively act to transport enthalpy from the ocean to the atmosphere, as do the latter. Evidence in favor of this hypothesis include...

متن کامل

Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models

[1] The radiative response of tropical clouds to global warming exhibits a large spread among climate models, and this constitutes a major source of uncertainty for climate sensitivity estimates. To better interpret the origin of that uncertainty, we analyze the sensitivity of the tropical cloud radiative forcing to a change in sea surface temperature that is simulated by 15 coupled models simu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012